High charge mobility in two-dimensional percolative networks of PbSe quantum dots connected by atomic bonds

نویسندگان

  • Wiel H. Evers
  • Juleon M. Schins
  • Michiel Aerts
  • Aditya Kulkarni
  • Pierre Capiod
  • Maxime Berthe
  • Bruno Grandidier
  • Christophe Delerue
  • Herre S. J. van der Zant
  • Carlo van Overbeek
  • Joep L. Peters
  • Daniel Vanmaekelbergh
  • Laurens D. A. Siebbeles
چکیده

Two-dimensional networks of quantum dots connected by atomic bonds have an electronic structure that is distinct from that of arrays of quantum dots coupled by ligand molecules. We prepared atomically coherent two-dimensional percolative networks of PbSe quantum dots connected via atomic bonds. Here, we show that photoexcitation leads to generation of free charges that eventually decay via trapping. The charge mobility probed with an AC electric field increases with frequency from 150 ± 15 cm(2) V(-1) s(-1) at 0.2 terahertz to 260 ± 15 cm(2) V(-1) s(-1) at 0.6 terahertz. Gated four-probe measurements yield a DC electron mobility of 13 ± 2 cm(2) V(-1) s(-1). The terahertz mobilities are much higher than for arrays of quantum dots coupled via surface ligands and are similar to the highest DC mobilities reported for PbSe nanowires. The terahertz mobility increases only slightly with temperature in the range of 15-290 K. The extent of straight segments in the two-dimensional percolative networks limits the mobility, rather than charge scattering by phonons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Facile synthesis of ultra-small PbSe nanorods for photovoltaic application.

Nanocrystal array solar cells based on lead chalcogenide quantum dots (QDs) have recently achieved a high power conversion efficiency of over 8%. The device performance is expected to further increase by using 1-dimensional nanorods (NRs), due to their improved carrier transport over zero-dimensional quantum dots. However, previously reported PbSe NRs have not been used in solar cells mainly be...

متن کامل

PbSe quantum dot field-effect transistors with air-stable electron mobilities above 7 cm2 V(-1) s(-1).

PbSe quantum dot (QD) field effect transistors (FETs) with air-stable electron mobilities above 7 cm(2) V(-1) s(-1) are made by infilling sulfide-capped QD films with amorphous alumina using low-temperature atomic layer deposition (ALD). This high mobility is achieved by combining strong electronic coupling (from the ultrasmall sulfide ligands) with passivation of surface states by the ALD coat...

متن کامل

Enhanced thermopower in PbSe nanocrystal quantum dot superlattices.

We examine the effect of strong three-dimensional quantum confinement on the thermopower and electrical conductivity of PbSe nanocrystal superlattices. We show that for comparable carrier concentrations PbSe nanocrystal superlattices exhibit a substantial thermopower enhancement of several hundred microvolts per Kelvin relative to bulk PbSe. We also find that thermopower increases monotonically...

متن کامل

Gate-dependent carrier diffusion length in lead selenide quantum dot field-effect transistors.

We report a scanning photocurrent microscopy (SPCM) study of colloidal lead selenide (PbSe) quantum dot (QD) thin film field-effect transistors (FETs). PbSe QDs are chemically treated with sodium sulfide (Na2S) and coated with amorphous alumina (a-Al2O3) by atomic layer deposition (ALD) to obtain high mobility, air-stable FETs with a strongly gate-dependent conductivity. SPCM reveals a long pho...

متن کامل

Orbital susceptibilities of PbSe quantum dots.

Different sizes of three-dimensional PbSe quantum dots have been synthesized for the study of orbital magnetic susceptibilities. Two types of orbital susceptibilities have been found, including the Curie susceptibility and finite-size corrections to the Landau susceptibility. The Curie term of a quantum dot manifests itself in the temperature dependence of magnetic susceptibility at low tempera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015